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Sex determination from skeletons is an important research subject in forensic medicine. Previous skeletal sex assessments are
through subjective visual analysis by anthropologists or metric analysis of sexually dimorphic features. In this work, we present
an automatic sex determination method for 3D digital skulls, in which a statistical shape model for skulls is constructed, which
projects the high-dimensional skull data into a low-dimensional shape space, and Fisher discriminant analysis is used to classify
skulls in the shape space. This method combines the advantages of metrical and morphological methods. It is easy to use without
professional qualification and tedious manual measurement. With a group of Chinese skulls including 127 males and 81 females,
we choose 92 males and 58 females to establish the discriminant model and validate the model with the other skulls. The correct

rate is 95.7% and 91.4% for females and males, respectively. Leave-one-out test also shows that the method has a high accuracy.

1. Introduction

Sex identification from skeletons is a vital work for a forensic
anthropological analysis. Previous studies [1-4] indicate that
pelvis is the most reliable indicator of sex assessment, and
skull is the second one. However, not all forensic cases provide
a complete skeleton due to breakage or postmortem destruc-
tion, while the skull can be well preserved in most cases
since it is composed of hard tissue. So the skull is the most
commonly used skeleton part in forensic anthropological
analysis.

Traditional skeletal sex assessments principally rely on
visual assessments of sexually dimorphic traits. Rogers [5]
achieves an accuracy of 89.1% for a historic skeletal collection
by using visual morphological traits. By scoring the visual
assessments of five cranial traits (glabella, mental, orbit,
nuchal, and mastoid), Walker [6] achieves 90% accuracy for
modern American skulls via a quadratic discriminant analy-
sis model incorporating scores. According to Daubert [7] and
Mohan [8] criteria, Williams and Rogers [9] assess 21 skull
characteristics of 50 white European Americans (25 males
and 25 females). For a characteristic, if the intraobserver error

is no more than 10% and the accuracy is above 80% when
it is used separately to identify the sex, the characteristic is
defined as a high quality characteristic. They get six high
quality characteristics like eyebrow, orbit, and so forth, and
the accuracy reaches 94% by utilizing visual assessments of all
these six characteristics. Visual assessments depend heavily
on physical anthropologists’ understanding of population
differences in sexual dimorphism. The visual assessment
results reported in the paper [10] show that Krogman and
Iscan achieve 92% accuracy using the Todd collection, while
Stewart only obtains 77% accuracy using some American
black skulls from the Terry collection. Ramsthaler et al.
[11] use kappa statistics to quantify the disagreement in
sex classification performed by two different observers after
visual assessment, and the agreement only reaches 90.8%.
Moreover, visual assessment of the morphological traits is
likely to be inaccurate when performed by an inexperienced
observer due to its great subjectivity. With the progress of
the digital imaging technology in medicine, discriminant
analysis for skeletal measurements is increasingly used for sex
estimation.
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Since radiograph can provide architectural and morpho-
logical details of the skull, some researchers [12-15] use skull
radiograph for sex identification. Hsiao et al. [12] consider
the lateral radiographs of 50 male and 50 female adult
skulls from Taiwan. They use 18 cephalometric variables,
which are derived from some cephalometric points on the
lateral radiographs, to build the discriminant function, and
claim a coincidence rate of 100%. But they do not mention
the generalization ability of the discriminant function, that
is, the classification ability for new samples. Veyre-Goulet
et al. [15] validate the method of Hsiao by using the lateral
radiographic data of 114 Europeans. They find that the result
using 8 cephalometric variables is the same as the one
using 18 variables, and the coincidence rate is 95.6%. They
think that different cephalometric variables can be used for
different races. Inoue et al. [14] compute the gradients and
distances of 39 measuring points in the lateral contour of the
skull and establish the discriminant function through these
variables by using 50 female and 50 male skulls from Japan
as specimens. 21 other specimens are tested, and the mean
correct rate is 86%. They conclude that gradient has higher
ability in reflecting gender differences than distances.

Other researchers use some variables measured from 3D
skulls to establish discriminant functions. Spradley and Jantz
[16] construct multivariate discriminant models using the
skull data from the Forensic Anthropology Data Bank. They
measure different variables for different races, and the highest
identification rate is no more than 90%. Jantz and Ousley [17]
issue the computer-aided software called Fordisc for skeleton
analysis. This software measures skeleton characteristics by
the human-computer interactive way and utilize the data
from American Forensic Data Bank to establish the discrim-
inant function. Guyomarc’h and Bruzek [18] compare the
sex identification effects of the software for different races
such as Thailand and France, and the correct recognition
rate is between 52.2% and 77.8%. Ramsthaler et al. [19] test
this software by using 98 Caucasian German skulls, and the
correct rate is 86%. These studies show that the craniofacial
morphology has great diversities among different races. For
Chinese, Li [20] manually extracts the mid-sagittal frontal
arc on dried skulls from northeast China, and the Fourier
coefficients of the arc are used for multivariate stepwise
discriminant analysis. The recognition rate for 31 test skulls
is 84.21% and 83.33% for males and females, respectively.
Shui [21] measures 14 metric variables and utilizes 94 skulls
from north China to establish stepwise fisher discriminant
functions. The recognition rate for 39 test skulls reaches 87%.

Discriminant analysis for skeletal measurements requires
a high measurement precision. However, the accurate mea-
surement of the skull is quite difficult. Williams and Rogers
[9] show that, for most measure variables, usually the
measurement error among different observers is above 10%.
Moreover, the skull size changes with varying ages. In this
work, we propose an automatic sex determination method
for 3D digital skulls. A statistical shape model is established
to describe statistical features of the skull morphology, and
Fisher discriminant analysis of the shape parameters is used
to classify skulls. The advantages of this method is as follows:
Firstly, it needs no professional qualification and tedious
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manual measurement; Secondly, it is less influenced by the
variation of the skull size; Finally, it can get a high recognition
rate.

2. Materials and Methods

2.1. Materials. This study has been approved by the Insti-
tutional Review Board (IRB) of Image Center for Brain
Research, National Key Laboratory of Cognitive Neuro-
science and Learning, Beijing Normal University. It is carried
out on a database of 208 whole skull CT scans on voluntary
persons that mostly come from Han ethnic group in North of
China, age 19-75 years for females and 21-67 years for males.
There are 81 females and 127 males. The CT images were
obtained by a clinical multislice CT scanner system (Siemens
Sensation 16) in the Xianyang hospital located in western
China. The images of each subject are restored in DICOM
format with a size of approximately 512 x 512 x 250. Each 3D
skull surface is extracted from the CT images and represented
as a triangle mesh including about 150,000 vertices. All the
skulls are substantially complete; that is, each skull contains
all the bones from calvarias to jaw and has the full mouth of
teeth.

To eliminate the inconsistence in position, pose, and scale
caused by data acquirement, all the samples are transformed
into a uniform coordinate system. The uniform coordinate
system is determined by four skull landmarks, left porion,
right porion, left (or right) orbitale, and glabella (denoted as
L., RP’ L,, G). From three points, LP’ RP’ L, the Frankfurt
plane is determined [22]. The coordinate origin (denotes as
O) is the intersection point of the line L ,R, and the plane
that contains point G and orthogonally intersects with line
L,R,. We take the line OR, as x-axis. The z-axis is the
line through the point O and with the direction being the
normal of the Frankfurt plane. Then y-axis is obtained by the
cross product of z- and x-axis. Once the uniform coordinate
system is defined, all the prototypic skulls are transformed
into it. Finally, the scale of all the samples is standardized
by setting the distance between Lp and RP to unit; that is,
each vertex (x, y,z) of the skull is scaled by (x/|L p - Rpl,
y/ILP _Rpl’ z/ILP —RPI). One skull in the uniform coordinate
system is shown in Figure L.

2.2. Statistical Shape Model Construction. Statistical shape
model is a widely used technique in medical image analysis.
It can efficiently describe the shape variance and ensure
that only statistically likely shapes are represented. Principal
Component Analysis (PCA) [23] is a powerful tool to build
statistical shape models, and it finds the major and minor
modes of shape variation across the training data. In order
to build the statistical model, a dense point correspondence
has to be established across the training set, that is, building
a point-to-point correspondence for all training samples
according to human anatomy characteristics. There are many
nonrigid registration methods [24-26] for dense mesh or
point cloud objects, and here we adopt the method presented
by Hu et al. [25]. As in [25], the back part of the reference
skull is cut away (as shown in Figure 2) considering that there
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FIGURE 1: One skull in the uniform coordinate system.

FIGURE 2: The back part of the reference skull is cut away.

are too many vertices in the whole skull, and the sexually
dimorphic traits are mainly on the front part of skulls. So
all of the aligned training skulls only keep the front part
corresponding to the reference.

By concatenating coordinates of all the vertices, a skull
can be represented as a high dimension vector. Thus we
construct a dataset of skulls {S; = (X}, ¥}, 25, > %oy
yfm, zism)T | i = 1,2,...,N}, where each coordinate index
labels corresponding points across the training set.

From the skull dataset, the mean skull data S and
covariance matrix £ of the mean normalized skulls are
calculated. PCA essentially transforms the mean normalized
shape data into a subspace spanned by the orthogonal unit
eigenvectors Uy, k = 1,2,..., N — 1, of the covariance matrix
in descending order according to their associated eigenvalues

Reference skull S, = S

Align $° to S, by ICP
J/ S, =S(a)
Aligned sample S, T

Model parameter

determination using S,

Reach max loops or

satisfy precision

FIGURE 3: Model matching procedure.

Ak, which represent variation modes of the data. Then the
skull statistical shape model is constructed as in the following
parameterized model:

_ M
S(@a) =S+ ZakUk, ¢))
k=1

where the number M is the mode number, usually deter-
mined by a variance contribution rate calculated from the
cumulative eigenvalues, and the combination coefficient a =
(ay,ay ..., ay)" is the model parameter. Apparently this
statistical shape model assumes that the shape vectors S
obey a normal distribution with mean S and covariance
matrix X, so the parameter a for a plausible skull meets a
normal distribution with zero mean and covariance matrix

diag(A;,A,, ..., A ).

2.3. Statistical Shape Model Matching. Model matching is to
determine the model parameter for a given skull. If the skull
data S, is aligned, the model parameters can be determined
by PCA transform. According to the statistical models (1),
let P, = [U;,U,,...,U,,] denote the PCA transform matrix
for skulls, and the model parameter can be determined as
follows:

a=P](S,-9). )

So in fact the model matching is a procedure of the skull
registration. Given an unknown prototypic skull data S, it
is firstly transformed into the uniform coordinate system as
Section 2.1 describes. Figure 3 shows a statistical shape model
based registration algorithm. As shown in Figure 3, a dynamic
reference, denoted as S,, is updated by the statistical shape
model in each loop, whose model parameter is determined
by the PCA transform of the corresponding aligned sample



S, of last iteration. The initial reference is selected as the mean
shape, and an ICP algorithm [27] is used to align a target
to the reference. Apparently, the dynamic reference will be
closer and closer to the target skull along with the iterating,
so the iteration will converge. When the aligned sample does
not change, the iteration stops.

2.4. Fisher Discriminant Analysis in the Shape Parameter
Space. Fisher discriminant analysis is increasingly used for
skull sex determination. It projects samples from a high-
dimensional feature space into one axis called Fisher vector,
in which optimal linear classification can be achieved. Differ-
ent from previous methods, we perform Fisher discriminant
analysis not for skull measurements, but for shape parameters
of skulls.

According to the statistical shape model (1), a skull is
represented as a feature vector a = (a,,a,,...,d,,)" . Let m;,
#',i = 1,2, denote the mean and the number of the training
samples of the ith class, and let X; be the feature vector of the
jth sample of the ith class. Then within-class scatter matrix
and between-class scatter matrix can be defined as follows:

s.-3(S00-m)-m) ),

S, = (m; —m,) (m, - m,)".

(3)

The Fisher criterion is that the samples of the same class
are aggregated in the Fisher vector space, while the samples
of different class are separated as much as possible. So the
objective function is defined as follows:
wTSbw

(4)

Jr(w) =

wi'S, w’

By Lagrange Multiplier, the Fisher vector to this maximiza-
tion problem is as follows:

w=8(m, —m,). (5)

Then each skull feature vector a can be projected to the Fisher
vector, in which two classes of samples can be well separated:

t=Wla. (6)

Finally, a threshold is selected by using some prior knowl-

edge, for example,

r(m; +m,)
5 .

Given an unknown skull, the procedure of the sex determi-
nation is as follows.

ty=W @)

Step 1. Perform the statistical shape model matching to
determine the shape parameter as Figure 3 describes.

Step 2. Project the shape parameter to the Fisher vector, and
get the projection value t.

Step 3. If the value is larger than the threshold, the skull
gender is male. Otherwise, it is female.
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FIGURE 4: Variation of the correct classification rate of the test
samples with the mode number.

3. Results

The used data are the 208 whole skull CT scans described
in Section 2. We chose about three-fourths of the 208
skulls according to the age distribution as training samples,
including 92 males and 58 females, and other skulls as test
samples. In order to determine an appropriate mode number
(M in (1)) to build the statistical shape model, we use the
trial and error technique and analyze the variation of the
classification accuracy of the test samples with varying the
mode number by experiments. It is well known that, in
PCA, generally only some eigenvectors corresponding to
large eigenvalues of the covariance matrix represent modes
of variation of the data, while others represent noises. We
vary the mode number from 23 to 150, corresponding to
variance contribution rate from 96% to 100%, and the correct
classification rates for test samples are shown in Figure 4,
while the rate of training samples is 100% when the mode
number is larger than 80. From Figure 4 we can see that the
correct classification rate of females is always higher than that
of males, both of the correct rates for females and males are
above 86% when the mode number is greater than 80, and the
total correct rate for all test samples reaches maximum with
the mode number being 91, 118, 119, and 120. Since the correct
rate is stable with the mode number varying from 118 to 120,
we use 119 modes to build the statistical shape model.

Figure 5(a) shows the classification of the training sam-
ples with the mode number being 119, and the classification
accuracy of the training samples is 100%. Figure 5(b) shows
the classification of the test samples. One female and 3 males
are misclassified, and the correct rate is 95.7% and 91.4% for
females and males, respectively. We also classify the whole
208 samples using leave-one-out strategy. That is, repeatedly
207 samples are chosen as training samples, and the residual
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FIGURE 5: Classification of training samples (a) and test samples (b).

one is used as test sample. The mode number is still 119, which
maybe is not the optimal selection. The correct classification
rate is 91.3% and 90.1% for males and females, respectively.
Compared with the accuracy of 87% by Shui [21], which is a
metric analysis method and uses a subset of our 208 skulls
to establish the discriminant functions, this method highly
improves the accuracy.

4. Discussion

Traditional morphological methods depend heavily on phys-
ical anthropologists’ subjective understanding of population
differences in sexual dimorphism. Different observers usually
have a significant difference when performing the visual
assessment of the morphological traits, especially for those
inexperienced observers. On the other hand, discriminant
analysis for skeletal measurements depends less on the
examiner’s professional qualification and experience, but it
requires a high measurement precision, which is not easy to
realize. Majority of scientists contend that the combination
of metrical and morphological methods is the best way [28].
In this work, we use 3D dense point cloud data to build the
statistical shape model, and in a sense, the model parameters
metrically describe the skull morphology. So the method
combines the advantages of metrical and morphological
methods. Different from previous methods, what this method
measures is not distance- or volume-related variables, but
global shape variations.

Previous studies [18] show that the performance of sex
determination outside the reference population group for
which the discriminant function has been developed is poor.
We do not know whether this method also has this problem
due to lack of skull samples of another population, but there
indeed exists the problem of selection of training samples.
The more complete the training samples are, the better

the performance is. That is, the training samples should
depict shape variations as much as possible. We think that
only if other populations have similar shape variations, the
discriminant model we build is applicable. That just is the
reason that the correct classification rate of females is uni-
formly higher than that of males, as shown in Figure 4. When
the statistical shape model and the discriminant function
have been established, sex determination of an unknown
skull becomes easy to perform, and needs no professional
qualification and tedious manual measurement. Moreover,
although we use CT scans to construct 3D point cloud model
of the skull in this work, the statistical shape model we build
also can deal with 3D models constructed in any way such as
laser scan 3D camera.
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